Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain.
نویسندگان
چکیده
In addition to their well-established role in signaling rewarding outcomes and reward-predictive cues and in mediating positive reinforcement, there is growing evidence that nucleus accumbens (NAc) neurons also signal aversive events and cues that predict them. Here we use diffusion tractography to subdivide the right NAc into lateral-rostral (putative core, pcore) and medial-caudal (putative shell, pshell) subdivisions in humans. The two subregions exhibited differential structural connectivity, based on probabilistic tractography, to prefrontal cortical and subcortical limbic regions. We also demonstrate unique roles for each of the two subdivisions for monetary reward and thermal pain perception tasks: pshell signaling impending pain and value predictions for monetary gambles and pcore activating with anticipation of cessation of thermal pain (signaling reward value of analgesia). We examined functional connectivity for resting state, monetary reward, and thermal pain tasks, and for all three conditions observed that pcore and pshell of right NAc exhibit distinct patterns of synchrony (functional connectivity) to prefrontal cortical and subcortical limbic targets within the right hemisphere. To validate the NAc segregation, we mirrored the coordinates of right NAc pcore and pshell onto the left hemisphere and examined structural and resting state connectivity in the left hemisphere. This latter analysis closely replicated target-specific connections we obtained for the right hemisphere. Overall, we demonstrate that the human NAc can be parceled based on structural and functional connectivity, and that activity in these subdivisions differentially encodes values for expected pain relief and for expected monetary reward.
منابع مشابه
Evaluation of the effect of orexin-1 receptors in the nucleus accumbens shell on cost-benefit decision making in male rats
Background: Cost-benefit decision-making is a one of the decision-making models in which the animal achieves a final benefit (reward) by evaluating the cost (effort or delay). The role of different brain regions such as nucleus accumbens in this process has been proven. Orexin is a neuropeptide expressed exclusively by lateral hypothalamus area neurons and orexin-producing neurons project their...
متن کاملNucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward
Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopa...
متن کاملμ- and δ-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice.
Two motivational processes affect choice between actions: (1) changes in the reward value of the goal or outcome of an action and (2) changes in the predicted value of an action based on outcome-related stimuli. Here, we evaluated the role of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) in the nucleus accumbens in the way these motivational processes influence choice using outcome revalu...
متن کاملThe general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell.
Tests of Pavlovian-instrumental transfer (PIT) demonstrate that reward-predictive stimuli can exert a powerful motivational influence on the performance of instrumental actions. Recent evidence suggests that predictive stimuli produce this effect through either the general arousal (general PIT) or the specific predictions (outcome-specific PIT) produced by their association with reward. In two ...
متن کاملHigh-frequency electrical stimulation in the nucleus accumbens of morphine-treated rats suppresses neuronal firing in reward-related brain regions
BACKGROUND Previous studies have reported that high-frequency stimulation (HFS) in the nucleus accumbens (NAc) is a potential treatment modality for drug craving and relapse. We aimed to explore the electrophysiological changes in reward-related brain regions during NAc stimulation and reveal the effects of stimulation frequency and target changes on NAc neuronal activities. MATERIAL/METHODS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 41 شماره
صفحات -
تاریخ انتشار 2013